閉める
閉める
明日に向けたネットワーク
明日に向けたネットワーク
サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。
          Netskopeを体験しませんか?
          Get Hands-on With the Netskope Platform
          Here's your chance to experience the Netskope One single-cloud platform first-hand. Sign up for self-paced, hands-on labs, join us for monthly live product demos, take a free test drive of Netskope Private Access, or join us for a live, instructor-led workshops.
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            Netskope、2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご確認ください。
              ダミーのためのジェネレーティブAIの保護
              ダミーのためのジェネレーティブAIの保護
              Learn how your organization can balance the innovative potential of generative AI with robust data security practices.
                Modern data loss prevention (DLP) for Dummies eBook
                最新の情報漏えい対策(DLP)for Dummies
                Get tips and tricks for transitioning to a cloud-delivered DLP.
                  SASEダミーのための最新のSD-WAN ブック
                  Modern SD-WAN for SASE Dummies
                  遊ぶのをやめる ネットワークアーキテクチャに追いつく
                    リスクがどこにあるかを理解する
                    Advanced Analytics transforms the way security operations teams apply data-driven insights to implement better policies. With Advanced Analytics, you can identify trends, zero in on areas of concern and use the data to take action.
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        Netskope One Private Access is the only solution that allows you to retire your VPN for good.
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                            Netskope GovCloud
                            NetskopeがFedRAMPの高認証を達成
                            政府機関の変革を加速するには、Netskope GovCloud を選択してください。
                              Let's Do Great Things Together
                              Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。
                                Netskopeソリューション
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.
                                  Netskopeテクニカルサポート
                                  Netskopeテクニカルサポート
                                  クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発など、多様なバックグラウンドを持つ全世界にいる有資格のサポートエンジニアが、タイムリーで質の高い技術支援を行っています。
                                    Netskopeの動画
                                    Netskopeトレーニング
                                    Netskopeのトレーニングは、クラウドセキュリティのエキスパートになるためのステップアップに活用できます。Netskopeは、お客様のデジタルトランスフォーメーションの取り組みにおける安全確保、そしてクラウド、Web、プライベートアプリケーションを最大限に活用するためのお手伝いをいたします。

                                      In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images

                                      Jul 27 2020

                                      Co-authored by Yihua Liao and Yi Zhang

                                      You have probably heard of how AI technology is used to recognize cats, dogs and humans in images, a task known as image classification. The same technology that identifies a cat or dog – can also identify sensitive data (such as identification cards and medical records) in images traversing your corporate network. In this blog post, we will show you how we use convolutional neural networks (CNN), transfer learning, and generative adversarial networks (GAN) to provide image data protection for Netskope’s enterprise customers. 

                                      Image Data Security

                                      Images represent over 25% of the corporate user traffic that goes through Netskope’s Data Loss Prevention (DLP) platform. Many of these images contain sensitive information, including customer or employee personally identifiable information (PII) (e.g., pictures of passports, driver’s licenses, and credit cards), screenshots of intellectual property, and confidential financial documents. By detecting sensitive information in images, documents, and application traffic flows, we help organizations comply with compliance regulations and protect their assets.

                                      The traditional approach to identifying sensitive data in an image has been to use optical character recognition (OCR) to extract text out of the image. The extracted text is then used for pattern matching. This technology, though effective, is resource-intensive and delays detection of security violations. OCR also has difficulties identifying violations in low-quality images. In many cases, we only need to determine the classification of the input image. For example, we would like to find out whether an image is a credit card or not, without knowing the 16-digit card number and other details in the image. Machine learning-based image classification is an ideal choice for that because of its accuracy, speed and ability to work inline with granular policy controls. We can also combine image classification with OCR to generate more detailed violation alerts. 

                                      CNN and Transfer Learning

                                      Deep learning and convolutional neural networks (CNN) were a huge breakthrough in image classification in the early 2010s. Since then, CNN-based image classification has been applied to many different domains, including medicine, autonomous vehicles, and security, with accuracy close to that of humans. Inspired by how the human visual cortex works, a CNN is able to effectively capture the shapes, objects and other qualities to better understand the contents of the image. A typical CNN has two parts (depicted in the chart below):

                                      • The convolutional base, which consists of a stack of convolutional and pooling layers. The main goal of the convolutional base is to generate features from the image. It builds progressively higher-level features out of an input image. The early layers refer to general features, such as edges, lines, and dots in the image. Meanwhile, the latter layers refer to task-specific features, which are more human interpretable,  such as the logo on a credit card, or application windows in a screenshot. 
                                      • The classifier, which is usually composed of fully connected layers. Think of the classifier as a machine that sorts the features identified in the convolutional base. The classifier will tell you if the features identified are a cat, dog, drivers license, or X-ray.
                                      Diagram of CNN and transfer learning
                                      Image Source: DOI: 10.3390/electronics8030292

                                      You may need millions of labeled images to train a CNN from scratch in order to achieve state-of-the-art classification accuracy. It is not trivial to collect a large number of images with proper labels, especially when you are dealing with sensitive data such as passports and credit cards. Fortunately, we can use transfer learning, a popular deep learning technique, to train a neural network with just hundreds or thousands of training samples. With transfer learning, we can leverage an existing convolutional neural network (e.g., ResNet or MobileNet) that was trained on a large dataset to classify other objects, and tweak it to train with additional images. Transfer learning allows us to train a CNN image classifier with a limited dataset and still achieve good performance while significantly reducing the training time.

                                      Synthetic Training Data Generation

                                      It’s very challenging to acquire real images for the sensitive categories we are interested in. To increase the amount and diversity of the training dataset and further improve the accuracy of CNN classifiers, we use generative adversarial networks (GAN) to generate synthetic training data. The basic idea of a GAN is to create two neural networks (high-level architecture diagram below), which compete against each other. One neural network, called the generator, generates fake data, while the other, the discriminator, evaluates them for authenticity. The goal is to generate data that is similar to the training data and fool the discriminator.

                                      Diagram of GAN
                                      Image Source: Deep Convolutional Generative Adversarial Networks

                                      With a GAN, we are able to synthesize photorealistic images with varying degrees of change in rotation, color, blurring, background, and so on. Here are a few examples of the synthetic images:

                                      Examples of synthetic images

                                      Netskope’s Inline DLP Image Classifiers

                                      At Netskope, we have developed CNN-based image classifiers, as part of our Next Gen SWG and cloud inline solutions covering managed apps, unmanaged apps, custom apps, and public cloud service user traffic. The classifiers are able to accurately identify images with sensitive information, including passports, driver’s licenses, US social security cards, credit cards and debit cards, fullscreen and application screenshots, etc. The inline classifiers provide granular policy controls in real-time.

                                      Examples of passports, drivers licenses, social security numbers, and credit/debit cards
                                      Screenshots of examples

                                      Future Work

                                      At Netskope, we are actively expanding our portfolio of inline image classifiers with the latest computer vision technology. We also have the capability to train custom classifiers and identify new types of images that our customers are interested in classifying. If your organization has unique assets that may be shared in images and you’d like to protect those assets, please contact us at [email protected] to learn more.

                                      author image
                                      Yihua Liao
                                      Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
                                      Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.

                                      Stay informed!

                                      Subscribe for the latest from the Netskope Blog